Dear Customers and Friends,

The naturalist and philosopher Henry David Thoreau once said, “If one advances confidently in the direction of his dreams, and if he endeavors to live by the life which he has imagined, he will meet with a success unexpected in common hours.” I was fascinated with Dr. Bernd Meyburg’s introduction to his article where he recalls being a young boy in what was then West Germany: he dreamed of tracking raptors and of saving the chick that would otherwise be killed by its sibling in the nest. Bernd diligently pursued his dream by using whatever technology was available at the time, first VHF transmitters and ultimately satellite transmitters.

In June of 2007, I had the privilege of being hosted by the Meyburgs. While cruising around Germany at great speeds, I witnessed firsthand Bernd Meyburg’s enthusiasm, dedication, and absolute commitment. I wish to thank him and his wife, Christiane, for their hospitality; I will forever remember those three days. Thank you, too, for your article which should inspire others to pursue their dreams.

Fifteen hundred kilometers southwest of Germany, in the Basque area of Spain, Professor Joseba Tobar-Arbulu and his local Woodcock Hunters’ Club dreamed of tracking the woodcock. Using a 9.5g PTT, they have been tracking Navarre, the “Iron Woodcock.” Thank you for your article. Again, I hope that this will inspire others to pursue their dreams.

What do we dream of here at MTI? We dream of creating the technology that would allow you the researchers, to pursue your own dreams. Our full development agenda is testimony to our commitment. We also dream that we will inspire the next generation to carry on where we leave off. Hence, we welcome an opportunity to work with school children. We thank Bridget Olson for her article on Project MAGO and Irene Nolan of the Hatteras Free Press for allowing us to reprint one of her recent articles. On April 24th, Chris and I visited Cape Hatteras Secondary School of Coastal Studies to give a talk to the students about satellite telemetry. We were impressed by these budding scientists!

Have a productive field season and a good summer.

Sincerely,
Paul and the staff at MTI
The first author had already been preoccupied with raptors for two of his schoolboy years when, in 1964, he came across a small book about the Lesser Spotted Eagle Aquila pomarina (LSE). Two aspects of the biology of this species immediately fascinated him. First, the so-called ‘Cain and Abel struggle’, also known as cainism, whereby the eldest chick (“Cain”) kills its younger sibling (“Abel”), and secondly, the species’ lengthy migration route to southern Africa, the longest of any raptor breeding in Germany.

He was interested not only in how and why cainism occurred, but also the question as to whether this phenomenon could be used to protect this endangered species, by using human intervention to prevent the death of the younger sibling, thereby doubling the reproductive rate of the breeding pair.

The LSE was once widely distributed in Germany but, over the 20th Century, its German breeding range had shrunken to a small region in the northeast of the then German Democratic Republic (GDR or East Germany) to the north of Berlin. Although the nearest breeding site was only some 50 km away from my flat, it proved impossible to visit. As a resident of West Berlin, all attempts to arrange observation and studies of these birds were unsuccessful. The Cold War was at its height and West Berlin, surrounded by a Warsaw Pact country, was seen as a particularly bitter enemy of the Eastern Bloc.

Nevertheless the senior author did not give up and he was able to begin eagle observations and experiments in 1968 in Czechoslovakia instead. He managed to make contact with local raptor specialists and get the necessary permits to visit. He soon made friends with Jan Švehlik from Kosice, and his room in his parent’s flat was quickly converted into a laboratory which we equipped with an incubator so we could artificially hatch the second-laid eggs and hand-rear the chicks.

Our big day came at the beginning of August that year. Two second-hatched chicks, which had been hand-reared in captivity and ringed, were returned to their nests in the wild and they later fledged with their siblings. We observed them for as long and as well as we could after they flew from the nest, wondering whether both young eagles would continue to be cared for by their parents. This proved quickly and happily to be the case. The next question was whether both would be fit enough to survive the long migration to Africa and back. This was an open question as satellite telemetry (ST) was unheard of at that time, but I already had this dream.

1989 signalled political change and the end of the GDR, an important and decisive moment in my life. During the final months of the GDR regime there were no more political restrictions to LSE research. Telemetry studies, up until then unthinkable, were suddenly possible. At almost the same time an old dream, research into the migration of the LSE to southern Africa using telemetry, came closer to being realized. Satellite transmitters (PTTs) had now become more and more miniaturized and finally reached a size and weight which enabled them to be fitted to this medium-sized eagle. In 1992 the great moment came. We fitted the first nestling with a transmitter weighing 50g.

In 1994 we were able to fit transmitters to the first four adult eagles in Germany and Slovakia. In one case it was possible to document the eagle’s complete migration to Zambia, its wintering there, and its spring migration back to its breeding territory in Germany. Luck played a big part here as the transmitters were still battery powered. This meant that they had to be programmed so as to be active only for several hours every few days in order to extend the battery life to almost a year. This complete documentation of the annual route of a European migrant was the first of its kind.

As the population of the LSE in Germany continues to decline and the expansion of the EU increases the threat to the populations beyond the former territory of the GDR, through Poland and into the Baltic States and Slovakia, our previous experience of thwarting cainism came to the fore again. In 2004 two young LSEs flew from an eyrie located to the north of Berlin in Brandenburg. One of them had been captive-reared in a conservation station, before being returned to its nest to fledge. As a result, more second-born eaglets were also captive-reared in 2005 and 2006 and put back in their eyries with their siblings just before the latter flew from the nest.

Our old question still remained unanswered though. Were these rescued birds fit enough to migrate to southern Africa and back? In 2007 we got at least part of an answer. Two of Europe’s biggest nature conservation organizations started to support the project making it possible to satellite track young LSEs on a larger scale. At the same time we also began to import young Abels from Latvia since not enough nests were found early enough in Germany to rescue the second-hatched chicks.

In 2007 six young eagles were fitted with PTTs in three nests, each eyrie containing a German and a Latvian fledgling. The second big question arose: Would the young birds from Latvia take the same route as the German ones to arrive at the Bosphorus to continue along the Mediterranean coast to Africa? In late September the birds left Germany. The Abels migrated at least as well as the Cain. Two of the three Latvian Abels migrated exactly on the same route as the German eagles. One of them was tracked as far as Zambia. Its German nest companion, however, decided to winter in southern Sudan.
a great surprise, because the species was not known to spend the winter months north of the equator. In March and April 2008 the adult eagles we tracked have so far not triggered their return migration. Whether the one year old eagles stay in Africa or return to the breeding grounds is another question which we hope to solve. Considerably more second-hatched young eagles must be band-ringed every year in order to ensure that the population remains sustainable. In 2008 18 more young eagles besides 5 adults are planned to be fitted with PTTs.

Technical development

As for our raptor studies the development of the technical side of satellite telemetry can be divided into three phases: the period during which only battery-powered transmitters with Doppler locations were available, the period during which solar-powered transmitters with Doppler locations were used, and finally the period during which transmitters with GPS locations could be employed.

Taking a middle-sized species such as the Osprey, in 1992-1995 we used battery-powered PTTs with Doppler locations. The PTT’s life expectancy was about one year, when programmed to transmit for several hours every few days. We obtained a maximum of 100-150 locations from these PTTs. From 1995-2003 we used solar-powered PTTs with Doppler fixes for medium-sized raptors with a PTT life expectancy of several years (one case of 9 years) providing thousands of Argos locations per annum when sufficient light is available. Since 2004 we have used solar-powered PTTs with built-in GPS devices providing fixes precise to within a few dozen metres. These PTTs also furnish data on flight speed, direction and altitude to allow analysis of behaviour in detail for Ospreys and other similar-sized raptor species.

Depending on the size of the birds other PTTs are available. We used our first GPS PTT on an adult Imperial Eagle in 2003. Since 2007 we have used 22g GPS PTTs for Black and Red Kites. Very soon we hope to track three Hobby Falcons Falco subbuteo with tiny 5g PTTs, however with Doppler fixes.

Some highlights

Based on the monitoring of 146 individuals of 14 different species which we fitted with transmitters between 1992 and 2007 (see www.Raptor-Research.de for more information) we report here on a few highlights of our own telemetry results.

Year-round movements

One of our main objectives was to obtain a complete picture of the movements of adults throughout the year: the exact amount of time spent in the breeding sites, on migration and wintering. This was achieved for the first time in 1994-1995 for an adult male LSE tracked from northern Germany to its winter quarters in Zambia using a battery-powered PTT with Doppler fixes. This was the first detailed recording of this type for a European bird migrating to Africa. This eagle spent seven and a half weeks for each of its migrations over a distance of almost 9000 km. It flew a daily average of 166 km and its autumn and spring routes proved to be nearly identical. Its winter quarters in Zambia covered an area of 25,000 kms.

We have succeeded in documenting the movements of other eagle species for at least one whole year, such as Steppe Eagles Aquila nipalensis, Greater Spotted Eagles Aquila clanga, Osprey, Honey Buzzard Pernis apivorus, Black and Red Kites Milvus migrans and M. milvus.

Thanks to solar-powered PTTs it has later been possible to compare the routes and time spent on several consecutive years. Satellite tracking of a pair of Lesser Spotted Eagles nesting in Germany yielded 3,641 locations in all. Four autumn and two spring migrations were recorded in full between 1997 and 1999. The two males’ transmitters provided us with fixes over a period of about 24 months and that of the female 19 months.

The male took up its winter quarters in Zambia 9,300 km from its nest and the female 11,300 km in Zimbabwe, South Africa and Mozambique. She spent almost half the year on migration (47.6%) and only 9% wintering.

The male devoted 35.1% of the year on migration and 21.1% wintering. The migrations lasted an average of 81 days (52-119 days), the autumn migrations being clearly longer (74-119 days) than those in spring (52-64 days). The speed of migration varied not only from year to year but also according to the regions crossed. The longest stages were recorded during the crossing of the Sahara desert (up to 521 km a day), with the highest speed reaching 66.8 km/hr.

The complete spring migration route of the female LSE from winter quarters to breeding site, including all overnight stops, was documented in detail for the first time in 1998 using a solar-powered PTT with Doppler fixes. The female left its winter quarters in the Kruger National Park, South Africa, on 21 February 1998 and 64 days later, on 25 April, arrived late at the breeding site in Germany. During 59 days it covered on average 211 km (min. 18, max. 406 km/day) (see Fig. 1 above). The arrival of the female at the breeding site was observed directly. This enabled, for the first time, proof of a temporary partner change. The female (fitted with a transmitter) from the previous year immediately ousted a new female that had already paired with the 1st year’s male.

An adult female Black Kite furnished inverse results so far as the length of migration was concerned. This bird nesting in Thuringia in central Germany, fitted with a solar-powered PTT on 16 June 2002, has to date yielded several thousand Doppler fixes. Six winterings, mainly in southern Mauritania, and twelve migration routes have been thoroughly documented. Each year it has migrated far more rapidly in autumn - the fastest taking only 17 days (averaging 332 km per day) - than in spring.
Migration routes and wintering zones hitherto unknown

Wahlberg’s Eagle Aquila wahlbergi is a species frequently met with in many parts of Africa, yet there have been very few returns of rings and its migratory behaviour remains virtually a mystery. In Central Africa it disappears after the breeding season to a destination unknown.

The first satellite tracking of a Wahlberg’s Eagle, between February and November 1994, gave proof of transequatorial migration within Africa. This adult female, after nesting in north Namibia, was tracked by satellite for a total distance of 8,816 km. At the end of the breeding season it flew northwards, visiting northern Cameroon, northeastern Nigeria and western Chad. The distance between its breeding territory and its sojourn outside the breeding season was 3,520 km. The northward migration took one month and the return southward took two weeks longer.

Since 1995 13 GSEs from Poland have been tracked by satellite. They visited at least five countries where they had never, or hardly ever, been previously observed by ornithologists (Chad, Central African Republic, Tanzania, Zambia, Malawi). Two males wintered in Zambia, around 1,500 km beyond the most southern wintering zones hitherto known for this species (Kenya and Uganda). The first male wintered in Zambia in 1996-97 and again in 1997-98, giving us proof that it spent these two consecutive winters in exactly the same region. During its first winter it remained there for two and a half months (26 December to 9 March 1997) in the northeast of the South Luangwa National Park, where it provided 114 Doppler locations. The following winter it returned to exactly the same winter quarters, where it was located 22 times. It remained in an area of only 22.75 km² (6.5 x 3.5 km). A second male wintered in this same region and was accordingly included in the list of Zambian birds, probably the first time that a species has been accepted in this way without having in fact been observed.

Fidelity to wintering sites

Most birds of prey remain faithful to their nest sites and return there each year. Very little was known regarding this so far as wintering was concerned. For all the species tracked over a number of years we established that the adults generally returned to the same winter quarters. This was proved in particular for an adult female GSE tracked from 1999 on and still sending locations in April 2008 (see Tracker News Vol. 6, Issue 2, p. 4). It spent eight consecutive winters since we started to track it in the Göksu Delta in Turkey north of Cyprus where in two years it was possible both to observe and to photograph it. This bird obviously holds the world record for long-term tracking with a single PTT.

Whereas the majority of species have winter quarters relatively limited in area, the LSEs and Black Kites behave nomadically and often wander several thousands of kilometres during their winter in Southern and West Africa. We could however confirm that they too visit the same regions in most cases. Thus a female adult LSE born in 2000 always winters in northern Namibia and southwestern Botswana since 2004 when it was fitted with a GPS PTT (see Fig. 2).

One Black Kite spent several consecutive years in southern Mauritania and northern Mali but was also located one year in Senegal and even the Ivory Coast. A Red Kite, which also wintered in southern Spain for two years, spent the third winter in the north of Spain.

The question of Steppe Eagles’ migration routes between Asia and Africa answered

During the past 35 years raptor migrations to the Near East have been studied in detail by making counts at concentration points, and the migration of Steppe Eagles posed a few riddles. The greater number of migrating eagles at Eilat and Suez north of the Red Sea in spring than in autumn was a puzzling phenomenon. Indeed, one would have expected the opposite result in view of the increased mortality of young and immature birds as well as their longer-lasting stay in the wintering zones. Light was shed on this mystery thanks to satellite telemetry.

From 1993-1997 we fitted 16 Steppe Eagles in autumn in Arabia with PTTs, the last five transmitters fitted in 1996 and 1997 were solar powered. Seven of the birds flew to Africa via the Bab-el-Mandeb Straits in south Yemen, with others spending the winter on the Arabian peninsula.

Having wintered in Africa the spring migration of all these eagles led them to fly north of the Red Sea via Suez and Eilat, revealing the existence of a circular route around the Red Sea (see Fig. 3 & 4). The existence of this migration loop explains the differences noted by observers and answers the questions raised on this subject in the literature.
It is generally but erroneously assumed that this delayed return from wintering was caused by bad weather conditions encountered during the spring migration, such as led in storks, for example, to catastrophic reduction in breeding success. Thanks to ST we were able to prove for the first time in 1997 that not only was the return to Europe overdue but also the departure in autumn 1996 had been delayed. In 1997 two of the eagles began their spring migrations on 14 and 16 March respectively, comparatively late according to the results from previous studies. The birds arrived two to three weeks late at their breeding sites. The eagle fitted with PTT 16865 crossed the Bosphorus on 17 April at a time when it would normally have reached its nest territory; it in fact arrived there on 4 May. On 12 April the bird with PTT 16867 was near Konya in Turkey, 430 km from the Bosphorus, whereas by this date many eagles have generally arrived north of Berlin. This delay did not solely concern birds carrying transmitters; practically all eagles arrived with a similar delay in 1997, not only in Germany but also in Latvia. We presume that in many cases, as with the birds tracked by satellite, their departure on migration began too late the previous autumn and it was not the bad weather conditions during the spring migration which caused the nesting failure for many pairs in 1997.

GPS locations permit precise study of territory size and habitat use

Between 2004 and 2007 we were able to analyse territorial behaviour, home range sizes and habitat use by eight adult LSEs (six males and two females) fitted with GPS transmitters in Germany, several of which are still being tracked. The territory area of four males during one breeding season was a minimum of 32.78 km². The fifth male, which was tracked for two years, used territories of 93.78 km² in 2005 and 172.29 km² in 2006. The average size of these six territories was 72.29 km². The areas of activity of the two females differed greatly in size, although both bred successfully. Now we can not only check our eagles’ daily movements via the Internet during their migration period, we can also check on the location of birds who have returned to their breeding territories. Part of our current research is the evaluation of eagle habitat use by means of digital maps, air and satellite photographs, direct observation, etc. This means spending even more time on the computer and using increasingly complicated technology. Our eagle-watching techniques of the past, armed with binoculars and notebook, dodging the secret police in former East Germany, and the techniques we use today are worlds apart. Our eagle watching is no longer restricted by governmental regimes as we can now ‘watch’ our eagles migrate over many political boundaries around half of the world.
Tracking Sakers: A Tool for International Co-operation

Mátyás Prommer, János Bagyura, BirdLife Hungary

In the last issue of Tracker News, we wrote about the results of satellite telemetry of Hungarian Sakers. Currently, we are receiving signals from 4 Sakers out of ten equipped juveniles. Three of them have Microwave Telemetry’s 22g solar Argos/GPS PTTs. Two falcons are still in Sicily, one roaming around in Slovakia and Northern Hungary and one is still in Serbia.

This latter bird, named Lehel, has proved recently that satellite telemetry can be a useful tool for building international co-operation. According to our policy, we were sending the GPS co-ordinates of the falcon to our reliable local colleagues in Serbia. Goran Sekuli from Serb Nature Conservancy found Lehel near Belgrade. However, Goran informed us that apparently “something had been hanging” from Lehel’s legs. After a short consultation, we decided to have a look at Lehel and try to trap him if necessary. On January 29, 2008 a three-man Hungarian “expedition” left for Serbia.

We were very lucky to find Lehel with Goran’s guidance almost instantly after our arrival. We spent half a day observing him and found that everything was fine with the PTT and the harness. Lehel moved without any problem and we saw him hunting as well. After this lucky day, we were invited to give a presentation to Serb ornithologists in Belgrade about our Saker conservation project and also we were told about Serb conservation projects.

Lehel’s story has confirmed again that satellite telemetry is an excellent tool not only for learning about bird migration, but also for building co-operation with colleagues in other countries and for learning about each other.

As of April 8, 2008 Lehel has now returned home to Hungary and is in the area where he fledged.

Navarre, the Iron Woodcock

Joseba Tobar-Arbulu
Club de Cazadores de Becada (CCB)
http://rtvs.ccbp.org

The woodcock is a very popular bird in Europe: its habits and habitats make it a very singular and special bird, targeted by hunters all over Europe. There are woodcock-hunters’ clubs at least in France, Ireland, Italy, Germany, Hungary, Greece, Turkey, Wales and Switzerland. In Spain, the CCB has over 800 members enrolled. Most of these clubs have formed a federation: Fanbpo (Fédération des Associations Nationales des Bécassiers du Paléarctique Occidental, http://fanbpofr.blogspot.com). Following MTI’s guidance, the CCB has been tracking woodcocks during the last two years. Navarre is a young woodcock we caught in Bakaiku (province of Navarre) in March 2007; the bird is a female (known by genetic analysis). Navarre went up to Russia, came back to 11 km from the point she was released (traveling more than 7,600 km) and is now again on her way to Russia (having passed Latvia, traveling more than another 2,525 km) and keeps going up…

According to some European people in charge of the most famous clubs of woodcock hunters, our Navarre has almost become a kind of mythological hero.

We did know about the woodcock’s habitats and habits. In this particular case, Navarre has proved that she has come back—right to her wintering ground, the beautiful beech grove of Aralar.

More-over, in order to reach her winter resting place, she has had to come through several regions of Europe during the open hunting season, with hunters everywhere. This is why some European fellows have named her the Iron Woodcock.

Being female, almost a mythological hero, and, above all, an iron woodcock, some friends of ours wish this bird had lots of chicks, to give them her biological strength and her intuition, so that they would also be able to navigate all these dangerous obstacles.

Long live Navarre!

As William Shakespeare wrote, “Navarre shall be the wonder of the World”.

MTI Conference

In our last issue of Tracker News, we indicated that we were considering hosting our own conference if there was enough interest. We thank you for the very positive response. Unbeknown to us, CLSAmerica had also been planning their conference in Annapolis in the fall of 2008. To avoid conflicting with theirs, we have decided to host ours in 2009. Tentatively mark your calendars for late March 2009. Look for details in our next issue and on our website.
Students and Parents Succeed in a Scientific Treasure Hunt

This article is reprinted with permission of the Island Free Press, an on-line newspaper, in Hatteras, North Carolina. We would like to express our thanks to writer and editor, Irene Nolan, for her contribution. www.islandfreepress.org

Science, a storm, and school children came together on the morning of Valentine’s Day to rescue a special electronic tag from the flotsam and jetsam on a Frisco beach. It was a tag that popped off a bluefin tuna and it contained valuable information about the travels and habits of the big migratory fish.

Here’s the way it happened.

On Wednesday night, Feb. 13, Dr. Molly Lutcavage, director of the Large Pelagics Research Lab at the University of New Hampshire, emailed some local boat captains, asking them to help recover a small, black pop-up satellite tag that had apparently come off a juvenile bluefin tuna. The 48-inch bluefin was tagged in a special project last August off Cape Cod.

The Large Pelagic Research Lab initiated its Tag a Tiny program in the summer of 2005. The goal is to study the annual migration paths and habits of juvenile bluefin tuna in order to better understand and conserve this highly sought after gigantic tuna whose populations are threatened by overfishing.

And now one of the $4,000 tags was off the fish and floating toward land. The messages being received from the satellite tag indicated that it was bobbing around in the rough seas off Hatteras Island. All day Wednesday, heavy winds had whipped up large waves and high tides along the island.

On Thursday, Feb. 14, the morning after Lutcavage sent her email to local captains, Nuno Fragoso of the Large Pelagics Research Lab, contacted Tracy Shisler, a science teacher at the Cape Hatteras Secondary School of Coastal Studies, and asked her for help. He asked if parents of the students might go to the beach, to the area from which the tag was transmitting a radio signal and search for the tag before it got washed out again in the tide. If the tag wasn’t found by the end of the school day, he asked if students might join the search. Lutcavage could see, using Google Earth, that the tag seemed to be located on the beach, near the airport.

Fragoso emailed Shisler a picture of the tag, Google maps, and coordinates for the location of the tag on Thursday morning. He also noted that there was a $250 reward for the return of the tag which can be refurbished and deployed on another juvenile bluefin. The students got on the phone with their parents, and Shisler sent the information to all of them with email accounts.

Ashley Hodges, 13, a seventh grader at Shisler’s class was one of the students who called her mother, Alex, who was on her way from Buxton to Hatteras after having delivered another child to school. The GPS coordinates put the tag on the beach very near Ramp 49 in Frisco. Alex Hodges has a GPS unit in her vehicle, so she turned off the highway and headed to the beach.

Hodges says she drove the beach for almost a half hour and saw nothing. She was ready to leave when she thought about getting out and walking a while on the sunny but cool morning. In just a few minutes, she noticed the debris line up near the dunes from the storm’s high tides. She walked up and started poking around. And there it was – the elusive satellite tag!

Hodges took it to school for Ashley and her classmates to see. “The students were very excited about the parent finding the tag,” says Tracy Shisler. “Alex Hodges brought the tag in and the kids were thrilled to be able to see what the tag looked like. I was emailing back and forth with Nuno, and I would read them the emails. They thought of it as an adventure unfolding before their eyes.

Alex and her husband, Dr. Al Hodges, donated the $250 reward for the tag to the school for a trip the middle school students plan to take to the Smithsonian Institution in Washington, D.C. Other parents, Dan and Jennifer Johnson, arranged for special FedEx packing to send the tag back to Microwave Telemetry in Maryland, the company that makes the tags and will recover the data.

In another interesting twist to the great tuna-tag hunt, the inventor and head of Microwave Telemetry, Inc., is Dr. Paul Howey, who has a vacation home in Hatteras village and knows Tracy Shisler and her family. Further, the Howeys are neighbors of the Hodges and friends of the Johnsons!

“The process of recovering this tag has been a great interactive learning opportunity for the Large Pelagics lab and the Hatteras students and their parents”, Molly Lutcavage wrote in an email. “The tag finders now know more about their local marine resources and have had a first hand look at the very latest technologies that fisheries scientists use to track marine animals.”

The students in Shisler’s sixth- and seventh-grade are involved in a fish and oyster hatchery program. “A major theme of my teaching,” Shisler says, “is that we need to be better stewards of our planet Earth. I am hoping that they realize that whenever they get the opportunity to help care for the Earth, they should step forward and help. I also want them to realize that science is exciting, fun, and interactive.”

In April, Chris and I had the privilege of meeting with Ms. Shisler and her students at their school. We told them the background of the X-Tag that popped up off Hatteras and then washed up on the beach near their school, and about many of the projects our PTTs have been used in. Tracy Shisler’s enthusiasm has obviously inspired a new generation of scientists. We hope to involve them in a new project soon, maybe this time tracking their own pelican!
Project MAGO

Bridget Olson, Bear River Migratory Bird Refuge, Brigham City, UT.

Project MAGO was launched in early 2007 with a goal of connecting 4th through 8th grade students of the Bear River Migratory Bird Refuge educational program of the Box Elder School District with the communities, wetlands, and biological monitoring program of the Marbled Godwit, Limosa fedoa.

The project had both a research and an education component.

MTI provided two free 9.5g solar powered PTTs to the Refuge for on-going research of the Marbled Godwit. Bear River Refuge, located in the northeast arm of the Great Salt Lake, is considered the largest staging area for godwits in the interior of North America. The objective of our research is to use MTI’s miniature satellite transmitters to link the Marbled Godwits that stop at the Refuge to their specific breeding and wintering areas.

In early 2007, about 240 4th graders were introduced to the Marbled Godwit (MAGO) via a brief life history lesson. Educators used the Marbled Godwit as a focal species to help deliver the “Wonder of Wetlands Program.” The Wetlands program included several field stations at the Refuge where the students examined habitat aspects of the godwit such as invertebrates, soil and water. A mounted Marbled Godwit was used to explain shorebird adaptations and a globe to introduce latitude and longitude to explain migration patterns. A “dummy” satellite transmitter was used to explain biologists’ research efforts and the value and use of science to track the MAGO. Finally, students were invited to participate in a MAGO “naming” contest by writing an essay about the life history and biology of the MAGO. The essay contest was a way to foster an appreciation for birds that use the Great Salt Lake. In addition, the students learned about latitude and longitude to determine migration pathways they utilize during specific breeding and wintering areas.

Throughout May, the coordinates of Marby and Pinocchio were collected on a weekly basis. These north and southbound treks allowed us to collect new scientific data linking Marbled Godwits that stop at the Refuge to their specific breeding and wintering areas as well as determine the migration pathways they utilize during these north and southbound treks.

Through the project, Box Elder elementary and intermediate students learned the natural history of the Marbled Godwit. By following the movements of the tagged birds, students learned where the birds go to breed and where they go to winter after departing from the Refuge at the Great Salt Lake. In addition, the students learned about latitude and longitude coordinate systems, the use of technology in science, and how their world at the Great Salt Lake is linked to other parts of the world through birds.

We consider Project MAGO a great success as the school teachers have requested a repeat of the Project in spring of 2008.

Pinocchio departed the Refuge about 5 days after capture. This bird migrated approximately 690 miles to apparent breeding grounds in central North Dakota. By July 1st, Pinocchio had migrated back to Bear River Refuge, Utah. Pinocchio remained on or adjacent to the Refuge for about 2 weeks before heading south to wintering grounds, reaching Laguna Ojo de Liebre, a large estuary adjacent to the small Mexican town of Guererro Negro on Baja Sur, Mexico on July 27th, 2007. Pinocchio continued to transmit from this location until early October.

Marby headed to breeding grounds in north-central Montana by the end of April. Marby was back at the Refuge by July 5th and remained until around August 7th. By August 16th Marby had joined Pinocchio at Laguna Ojo de Liebre in Baja, Mexico. Unfortunately, the last transmission from Marby was received on February 28, 2008, while the bird was still in Mexico.